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An ion pair receptor showing remarkable enhancement of
anion-binding strengths in the presence of alkali metal cations
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Abstract—An ion pair receptor was prepared by coupling of a diazacrown ether and a rigid biindole scaffold bearing hydrogen bond
donors of two indole NHs. The former serves as the cation-binding site and the latter functions as the anion-binding site. The anion-
binding affinities to the receptor, determined by 1H NMR titration experiments in 10% (v/v) DMSO-d6/CD3CN at 24 ± 1 �C, have
been greatly improved when an alkali metal cation binds to the adjacent diazacrown ether. For example, the association constant
between chloride and receptor alone is 7 M�1, but the magnitudes increase into 120 M�1, 14,000 M�1, and 6200 M�1 in the presence
of lithium, sodium, and potassium ions, respectively. The enhanced binding affinities must be attributed to electrostatic interactions
by possibly forming contact ion pairs.
� 2007 Elsevier Ltd. All rights reserved.
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A large variety of synthetic receptors binding either a
cation or an anion have been intensively prepared over
the last four decades.1 The binding properties of these
receptors with target ions have been frequently charac-
terized using organic salts, for example, picrate for
cations and tetrabutylammonium for anions, which
minimize adverse counterion effects on the binding
strengths. To circumvent this shortcomings, ditopic
receptors capable of simultaneously binding both a
cation and an anion as an ion pair have been studied
in recent years.2 The ion pair receptors have been proven
more effective on the solubilization and extraction of
salts in organic solvents, and the transport through
liquid membranes relative to the receptors binding either
a cation or an anion alone.

The ion pair receptors must possess both cation- and
anion-binding sites, which are delicately placed in right
distance and geometry able to form contact ion pair.
Otherwise high unfavorable energy is required for the
charge separation, which leads to decreasing the binding
affinity. A number of ion pair receptors have been
reported to date.3–5 Crown ethers4 and calixarenes5 have
been frequently utilized as cation-binding units, and
hydrogen-bonding donors such as amido and ureido
functionalities have been commonly incorporated for
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binding anions.3–5 Herein, we have prepared an ion
pair receptor 3, which exhibits dramatic increases in
halide-binding abilities when alkali metal cations are
3

Scheme 1. Synthesis of receptor 3.
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coordinated to the adjacent crown ether unit (see
Scheme 1). The cation effects on the binding strengths
become pronounced in the order of Li+ < K+ < Na+,
regardless of the kind of halides.

Utilizing an indole scaffold as a molecular building
block, we6 and others7 have recently prepared a number
of anion receptors able to bind anions based on hydro-
gen-bonding interactions. Here, a rigid biindole scaffold
1 with two indole NHs has been employed as hydrogen
bond donors. Diaza-18-crown-6 2, prepared according
to a literature procedure,8 has been selected as the
cation-binding site. Compound 1 was synthesized from
4-tert-butylaniline as described previously in our labora-
tory.6a,c The Pd(0)/CuI-catalyzed coupling9 of 1 with 2
afforded receptor 3 in 19% yield.10

First, the binding properties of 3 were qualitatively
investigated by 1H NMR spectroscopy in a polar med-
ium, 10% (v/v) DMSO-d6/CD3CN. When potassium
hexafluorophosphate (1 equiv) was added to receptor 3
(1 mM), the CH signals of the diaza crown unit were
shifted by Dd = 0.1–0.2 ppm as a result of potassium
binding, while no chemical shift change was observed
for indole NHs (Fig. 1b). In addition, the 1H NMR
spectrum of 3 was almost unchanged (Dd = 0.02 ppm
for the indole NH signal) upon addition of tetrabutyl-
ammonium chloride (Fig. 1c). However, the NH signal
was considerably downfield shifted (Dd = �1 ppm)
when both potassium hexafluorophosphate (1 equiv)
and tetrabutylammonium chloride (1 equiv) were added
(Fig. 1d). These spectral observations suggest that chlo-
ride binds more strongly to receptor 3 in the presence of
potassium ion.

Quantitative analyses for the binding behaviors were
performed by the 1H NMR titrations in 10% (v/v)
DMSO-d6/CD3CN at 24 ± 1 �C. Lithium perchlorate
(LiClO4), sodium perchlorate (NaClO4), and potassium
hexafluorophosphate (KPF6) were selected as sources of
alkali metal cations because of their sufficient solubility
Figure 1. Partial 1H NMR spectra (400 MHz, 10% v/v DMSO-d6/
CD3CN, 25 �C) of 3 (1.0 mM) in the presence of (a) none, (b) KPF6

(1 equiv), (c) n-Bu4N+Cl�(1 equiv), and (d) KPF6 (1 equiv)+n-
Bu4N+Cl� (1 equiv).
and the negligible binding ability of the counteranions
(ClO4

�, PF6
�) in these conditions. Halides were used

as tetrabutylammonium salts (n-Bu4N+X�). First, the
binding affinity between chloride and 3 was revealed in
the absence of any alkali metal salt. Upon addition of
chloride (up to 100 equiv), the NH signal of 3 was slowly
shifted downfield by approximately 0.5 ppm as a result
of forming hydrogen bonds, which yielded the associa-
tion constant (Ka) of 7 ± 2 M�1. Larger halides, Br�

and I�, showed similar trends but the magnitudes of
complexation-induced shifts (CIS) were too small
(Dd < 0.2 ppm) to accurately determine the association
constants.

Next, the titrations were carried out in the presence of
alkali metal salts to reveal the cation effect on the bind-
ing affinity of halides to 3. Addition of a halide to a solu-
tion containing 1:1 ratio of 3 and alkali metal salts
(1.0 · 10�3 M) results in large downfield shifts of the
NH signals. In addition, three aromatic CH signals are
slightly upfield shifted by 0.01–0.06 ppm during the
titration. As shown Figure 2 (top), the titration curves
are much steeper and the magnitudes of the CIS values
are much larger compared with the one observed with-
out an alkali metal salt. The association constants were
Figure 2. Titration curves (top) and Job’s plots (bottom) (10% v/v
DMSO-d6/CD3CN, 24 ± 1 �C) between 3 and tetrabutylammonium
chloride in the presence of alkali metal salts (1 equiv): none (purple
diamond) LiClO4 (blue square), NaClO4 (black triangle), and KPF6

(red circle).



Table 1. Association constants (Ka, M�1) between ion pair receptor 3

and halides in the presence of alkali metal salts (1 equiv) in 10% (v/v)
DMSO-d6/CD3CN at 24 ± 1 �Ca

Halideb Cation additive Association constant

Cl� None 7
Li+ClO4 120
Na+ClO4 14,000
K+PF6 6200

Br� None —c

Li+ClO4 24
Na+ClO4 600
K+PF6 200

I� None —c

Li+ClO4 9
Na+ClO4 61
K+PF6 45

a Titration experiments were all duplicated in the 1H NMR spectros-
copy, and the association constants were analyzed based on the
downfield shifts of the indole NH signals. Errors in the association
constants are less than 15% except those of Ka < 10 M�1 in which
cases errors increase up to 30%.

b Halides were used as tetrabutylammonium salts.
c The chemical shift changes during the titration were too small to

determine the association constant.
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determined by nonlinear least squares fitting analysis11

with the expression of a 1:1 binding isotherm and the
results are summarized in Table 1. The 1:1 complex for-
mation was also confirmed by the continuous variation
method (Fig. 2, bottom Job’s plot).12

Two trends are apparent. First, the association con-
stants of halides to 3 greatly increase in the presence
of alkali metal cations.13 For example, the association
constants of chloride are 120 M�1, 14,000 M�1, and
6200 M�1, in the presence of lithium, sodium, and
potassium ions, respectively. These are up to 2000-fold
higher than that (7 M�1) without any alkali metal cat-
ion, which corresponds to the free energy difference of
DDG = �4.4 kcal/mol. Second, in all cases studied here
sodium ion shows the highest cooperative effect on the
Figure 3. An energy-minimized structure of complex 3ÆNaCl generated
with MMFF force field (MacroModel 7.1).14
anion-binding strengths, followed by potassium ion then
lithium ion. The enhanced binding affinities of halides
must be attributed to electrostatic interactions with al-
kali metal cations. This interaction depends on the
charge density as well as the inter-ionic distance, which
in our system is seemingly optimal with sodium ion.
According to computer modeling (Fig. 3),14 chloride
ion is stabilized not only by two hydrogen bonds with
indole NHs but also by forming contact ion pair with
sodium ion binding to the adjacent crown ether moiety
by ion–dipole interactions.

In conclusion, an ion pair receptor has been prepared,
which consists of two different binding subunits, an aza-
crown ether unit for binding alkali metal cations and a
biindole scaffold for hydrogen-bonding with halides.
The receptor exhibits high cooperative binding of a cat-
ion and an anion; in the presence of alkali metal salts the
binding affinities of halides greatly increase up to three
orders of magnitudes. The modification of this receptor
is currently undergoing to develop a molecular sensor
able to show a color change upon binding a specific salt.
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Chem. Commun. 2003, 64–65; (e) Gunning, P.; Benniston,
A. C.; Peacock, R. D. Chem. Commun. 2004, 2226–2227;
(f) Mahoney, J. M.; Beatty, A. M.; Smith, B. D. Inorg.
Chem. 2004, 43, 7617–7621; (g) Mahoney, J. M.; Stucker,
K. A.; Jiang, H.; Carmichael, I.; Brinkmann, N. R.; Betty,
A. M.; Noll, B. C.; Smith, B. D. J. Am. Chem. Soc. 2005,
127, 2922–2928; (h) Liu, H.; Shao, X.-B.; Jia, M.-X.;
Jiang, X.-K.; Li, Z.-T.; Chen, G.-J. Tetrahedron 2005, 61,
8095–8100.

5. (a) Rudkevich, D. M.; Brzozka, Z.; Palys, M.; Visser, H.
C.; Verboom, W.; Reinhoudt, D. N. Angew. Chem., Int.
Ed. 1994, 33, 467–468; (b) Rudkevich, D. M.; Verboom,
W.; Reinhoudt, D. N. J. Org. Chem. 1994, 59, 3683–3686;
(c) Atwood, J. L.; Szumna, A. J. Am. Chem. Soc. 2002,
124, 10646–10647; (d) Tumcharern, G.; Tuntulani, T.;
Coles, S. J.; Hursthouse, M. B.; Kilburn, J. D. Org. Lett.
2003, 5, 4971–4974; (e) Nabeshima, T.; Saiki, T.; Iwabu-
chi, J.; Akine, S. J. Am. Chem. Soc. 2005, 127, 5507–5511;
(f) Lankshear, M. D.; Cowley, A. R.; Beer, P. D. Chem.
Commun. 2006, 612–614; (g) Lankshear, M. D.; Dudley, I.
M.; Chan, K.-M.; Beer, P. D. New. J. Chem. 2007, 31,
684–690.

6. (a) Chang, K.-J.; Moon, D.; Lah, M. S.; Jeong, K.-S.
Angew. Chem., Int. Ed. 2005, 44, 7926–7929; (b) Chang,
K.-J.; Kang, B.-N.; Lee, M.-H.; Jeong, K.-S. J. Am. Chem.
Soc. 2005, 127, 12214–12215; (c) Chang, K.-J.; Chae, M.
K.; Lee, C.; Lee, J.-Y.; Jeong, K.-S. Tetrahedron Lett.
2006, 47, 6385–6388; (d) Kwon, T. H.; Jeong, K.-S.
Tetrahedron Lett. 2006, 47, 8539–8541.

7. (a) Curiel, D.; Cowley, A.; Beer, P. D. Chem. Commun.
2005, 236–238; (b) He, X.; Hu, S.; Liu, K.; Guo, Y.; Xu,
J.; Shao, S. Org. Lett. 2006, 8, 333–336; (c) Sessler, J. L.;
Cho, D.-G.; Lynch, V. J. Am. Chem. Soc. 2006, 128,
16518–16519; (d) Lin, C.-I.; Selvi, S.; Fang, J.-M.; Chou,
P.-T.; Lai, C.-H.; Cheng, Y.-M. J. Org. Chem. 2007, 72,
3537–3542; (e) Bates, G. W.; Gale, P. A.; Light, M. E.
Chem. Commun. 2007, 2121–2123.

8. (a) Gatto, V. J.; Arnold, K. A.; Viscariello, A. M.; Miller,
S. R.; Morgan, C. R.; Gokel, G. W. J. Org. Chem. 1986,
51, 5373–5384; (b) Arnold, K. A.; Viscariello, A. M.; Kim,
M.; Gandour, R. D.; Fronczek, F. R.; Gokel, G. W.
Tetrahedron Lett. 1988, 29, 3025–3028.

9. (a) Sonogashira, K. In Metal-Catalyzed Cross-Coupling
Reactions; Diederich, F., Stang, P. J., Eds.; Wiley-VCH:
Weinheim, Germany, 1998; (b) Chinchilla, R.; Nájera, C.
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